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1 Introduction

1.1 Background

The pension system provides individuals with income after they have retired
from working life and no longer earn regular income from employment. In
Finland, there are three statutory pensions: the national pension, the guar-
antee pension and earnings-related pension. The first two provide individuals
with basic income security and are administered by the Social Insurance In-
stitution of Finland (Kansaneläkelaitos). The earnings-related pensions are
administered by many organizations. The national pension and earnings-
related pension complement each other: as the amount of the earnings-related
pension that an individual is entitled to increases, the amount of national
pension decreases. [1]

The national pension and the guarantee pension are funded from the state
budget. In contrast, the earnings-related pensions are funded by insurance
contributions from employers and employees. Funding of the earnings-related
pensions is based on two principles. The pay-as-you-go principle means that
the contributions from currently employed individuals are used to finance
the pensions of current retirees. The partial funding principle stands for
investing a fraction of the insurance contributions. This decreases the amount
of insurance contributions required to finance the pensions, as investment
returns can be used to cover a part of the cost. [2]

Recently the pension expenditure has exceeded the total insurance contri-
butions in both private and public sectors [3]. For instance, in the private
sector in 2017 insurance contributions totalled 16.5 billion EUR, whereas the
sum of pensions paid was 17.2 billion EUR [3]. As the number of pension-
ers in Finland increases and the working age population shrinks, the deficit
will only increase. This emphasizes the importance of pension funds in the
Finnish pension system.

Our client is the Varma Mutual Pension Insurance Company, which manages
earnings-related pensions for private sector employees and self-employed in-
dividuals. Varma is responsible for the pensions of almost 900 000 Finns,
making it one of the largest pension insurance companies in Finland. It is a
mutual company owned by its clients: private companies, insured employees,
self-employed persons and owners of guarantee capital. [4]

The 45 billion EUR investment portfolio of Varma consists mainly of equities
(46% of the portfolio value in 2017), fixed-income investments (28%), real
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estate investments (8%) and hedge funds [4]. Investment returns are realized
not only as changes in the value of the investments, but also as cash income
in the form of dividends, interest payments and rents. Achieving good re-
turn on investments is of great importance to Varma, as the company uses
the investment returns to cover the deficit between insurance contributions
received and pensions paid [4].

1.2 Objectives

The key decision in managing the investment portfolio of Varma is the allo-
cation of funds between equities and fixed-income investments, as these are
the largest asset categories. The objective of our team is to use machine
learning methods to make allocation decisions based on a large number of
macroeconomic and financial market indicators.

The objective consists of three tasks. First, we study the interactions of the
economic indicators by means of clustering and factor analysis. The results
of this task could also be important in the next two tasks, which are the
development of two models for performing allocation decisions. One model
should allocate funds between stocks and model, and the other between short
and long duration bonds. Time horizons of 3-6 months should be used in
making the allocation decisions. Finally, the allocations performed by the
models are compared against a static allocation where initial wealth is evenly
divided between two assets.
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2 Literature Review

2.1 Clustering

Clustering methods help in finding similar groups among a number of objects
[5]. This facilitates analysis of large amounts of data, as more focus can be
put in understanding the groups rather than the individual objects. For
instance, clustering of stocks allows an analyst to focus on the behavior of
groups of stocks instead of trying study each stock in isolation.

Typically the measure of similarity is some kind of distance metric. A very
common distance metric is the Euclidean distance, which is straightforward
to apply if the samples can be interpreted as independent and identically
distributed random variables. However, time series are sequences of samples
that are ordered by timestamps. Applying Euclidean distance can be difficult,
for example in the case where time series are not of equal length.

Some common measures of distance include Dynamic Time Warping, corre-
lation based distance and model based distance measures. Dynamic Time
Warping is a similarity metric that performs alignment of two sequences.
While it is great for detecting similar patterns in time series, the alignment
procedure does not preserve temporal correlation structures. Correlation
based distance does not suffer from this issue, as correlation captures the
correspondence of two variables only if they move in the same direction at
the same time. Model based distance measures are based on fitting the same
model on each time series, and then using Euclidean distance as a measure
of similarity in the parameter space. [5]

Two common methods for clustering are k-means and hierarchical clustering.
k-means is an iterative algorithm that proceeds by assigning samples to the
closest of k clusters, and then recomputing the cluster center as the mean
of cluster members. Hierarchical clustering comprises of two variants: ag-
glomerative and divisive clustering. In agglomerative clustering, each object
is initially in its own cluster and two closest clusters are merged each round
until all objects belong to a single cluster. Divisive hierarchical clustering
proceeds the other way round, all objects are initially in one cluster and splits
are performed iteratively. In k-means the number of clusters must be chosen
a priori, whereas hierarchical clustering produces a dendrogram that can be
used to determine a suitable number of clusters a posteriori, after the merges
or splits performed at each iteration by the algorithm have been examined.
[5]
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2.2 Factor analysis

Factor analysis is used to describe observed variables as linear combination
of some underlying factors or common factors [10]. Factor analysis also helps
us to interpreter these factors and gives us estimate of strength and direction
of the common factors on each of the measurement points.

One commonly used factor analysis method is principal component analy-
sis (PCA). It uses an orthogonal linear transformation that transforms the
original data into new coordinate system. The new coordinates or principal
components are uncorrelated and the greatest possible variance lies on the
first coordinate axis [7].

PCA can be used for many applications such as clustering and dimensional
reduction. For clustering, we can analyze each observation in the first few
axis of the new coordinate system and in this way investigate whether there is
some clear clusters in fewer dimensions. We can also analyze the behaviour
of different observed variables. For example, if two variables behave very
similarly, the angle between the scores of these two variables should be very
low in the plane of first two or more principal components.

PCA is most commonly used to reduce the dimensionality of data. This is
based on the fact that the principal components are ordered in the way that
the most of the variance lies on first component and least on the last com-
ponent [7]. After this we can ignore the last components that only provide
very little explanation on the variance of the original data.

2.3 Asset allocation, market timing and machine learn-
ing with financial data

The failure rate in quantitative financial machine learning is very high. Mar-
cos López de Prado summarizes in his paper [11] common errors made by
machine learning experts when they apply the methods on financial data.
He also provides solutions to avoid these errors. He stated, for example,
that one should use purging and embargoing to avoid cross validation leak-
age, use combinatorial cross validation to avoid limitations of walk forward
backtesting, to model side and size of the allocation separately to reduce the
complexity of the model and not to research trough backtesting in order to
avoid finding any false strategies that lead to good result only in the model
testing period. In this project, we followed many of his suggestions to avoid
common problems that might lead to poor results.
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However, it is certainly possible to generate trading strategies that produce
positive returns on one’s testing and model evaluation data, as showed by
Hull [14]. It should be noted that he allocates between cash and SPDR S&P
500 ETF (SPY) and allows an allocation between -50% and 150% in SPY.
This means that first and foremost he can choose to convert all his holdings
to a risk free asset and that he allows for shorting and leveraging. We do
not have an risk free asset to invest in and neither do we allow for shorting
or leveraging, thus Hulls trading strategy is not completely compatible with
Varma’s case. In another of his papers Hull has described a model that
allocates between 0% and 150% in SPY and the rest in US T-bills [15]. This
situation closely resembles ours, but still leveraging was allowed. However,
both of his strategies seem to work on paper, thus building an argument for
the predictability of investment returns.

2.4 Model validation

Model validation is used to test whether the outputs of a model sufficiently
correspond to the actual expected outputs. A common method of model
validation for predictive models is cross-validation [6]. In general, cross-
validation is performed by partitioning the available data into two subsets
called the training and validation set. The training set is used to fit the
model, and the performance of the model is tested on the validation set.

One of the most commonly used variations of cross-validation is k-fold cross-
validation [8, pp. 241 - 249]. In k-fold cross-validation the data is randomly
partitioned into k-subsets. The model is then trained using k-1 subsets, and
tested on 1 subset. This is done k-times such that each subset is used once
for testing. However standard k-fold cross-validation can not be used for
time series data. Since time series data is usually correlated along the time-
axis, randomly sampling data will cause highly correlated data to exist in
the training and validation sets. This defeats the point of cross-validation,
as we are in effect testing the model on data that we have trained it on.

This problem can be solved using a variant of k-fold cross validation called
purged and embargoed combinatorial cross-validation. In combinatorial cross-
validation the data is partitioned into N groups without shuffling. At each
train-test iteration, k groups are chosen as the testing set, and N-k groups
are used as the training set. This is repeated until all possible combinations
of train-test splits have been used.
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Each of our data points is associated with a prediction time and an evaluation
time. At evaluation time, the results of a given action become known. This
corresponds to the situation where if we invest in a given stock, the 20-
day returns of that investment is only known after 20 days. Purging means
eliminating from the training set all data points where the evaluation time
overlaps with prediction times in the testing set. Embargoing solves the
problem of correlation along the time-axis. It involves eliminating from the
training set all data points that follow a testing set.

Purging and embargoing can thus be used to prevent information from leak-
ing to the validation set. And combinatorial cross-validation provides a way
to generate a large number of training-validation splits, to get a more accu-
rate estimate of model performance.
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3 Data & methods

3.1 Data validation and processing

Our dataset consists of 63 time series of macroeconomic and financial market
indicators. The time series are of different frequencies, with daily, weekly and
monthly series. They are also of different lengths, some starting as early as
1998 and some as late as 2011. Three of these time series can be considered
our target variables, which depict the performances of global stock markets,
global short- and long duration bonds.

During exploratory data analysis the data was visually inspected to iden-
tify outliers or changes in data reporting (i.e changes in the scale of survey
questions). No outliers or changes were found.

Some time series did not contain data for some time periods, and were
dropped from the dataset. Since the time-series were of differing lengths,
some beginning as early as 1998 and some as late as 2011, we restricted
the data set to series that had data starting from 2002. This left us with a
dataset consisting of 59 time series out of the original 63.

To transform all the series to the same length, we mapped the weekly and
monthly values to daily values. The dataset was augmented by adding the
difference from moving average of 20 trading days for each daily time series.
For the weekly and monthly time series, we added the difference between two
consecutive values and mapped that to daily frequency.

3.2 Clustering of indicators & factor analysis

3.2.1 Principal component analysis

PCA transforms the original data x in to new observations y:

y = ΓT (x− µ) (1)

where µ is the mean vector of x and ΓTΣΓ = Λ = diag(λ1λ2, ...λp) where
Γ ∈ Rp×p, λn ≥ λm when n > m and Σ is the covariance matrix of x.

The components of y are called principal components. The variance ex-
plained by first m components can be calculated as sum of first m eigenvalues
divided by sum of all eigenvalues:
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λ1 + λ2 + ...+ λm
λ1 + λ2 + ...+ λp

(2)

We used PCA to have a deeper understanding on the behaviour of differ-
ent indicators. This can be done by performing PCA for the standardized
indicator data and plotting the score vectors of the indicators in the plain
of two first principal components. In this way we, can easily see whether
two indicators behave similarly in the two dimensional plain that explains as
much variation as possible.

We also wanted to reduce the dimensionality of the indicator data to improve
the performance of different machine learning models, because we did not
have enough data to support very large number of dimensions and we wanted
to reduce the noise in the daily indicator data. Also, if we are able to reduce
the multicollinearity in the data, we can improve the interpretation of input
parameters. This could be done by performing PCA for some cluster of
indicators that is found using e.g. hierarchial clustering or selected in some
other way. In this way, most information is still given as an input for the
models, but we can make sure that there is less correlation between different
variables. We choose the appropriate number of principal components to take
into account by using Equation 2. We need to explain most of the variance,
but we do not want to take new components that increase the explanation
of variation for chosen components only by a little.

3.2.2 Hierarchial clustering

We need to select a suitable distance metric to perform cluster analysis,
as discussed in the literature review. Model-based distance metrics are un-
suitable in our case, since our data contains a range of different economic
indicators. If all time series were representing similar data, such as stock
prices, a model-based distance metric would be more sensible. Furthermore,
Dynamic Time Warping is not ideal for our purposes either, since our pri-
mary interest is not to discover patterns that have occurred in different time
series over time but to see which variables seem to move in the same direction
at the same time. Thus, we use correlation-based distance, which is defined
as follows:

d(x, y) =
√

2[1− ρ(x, y)], (3)
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where ρ(x, y) is the Pearson’s correlation coefficient between time series x
and y. This metric has d(x, y) = 0 when ρ(x, y) = 1, whereas a negative
correlation coefficient results in large distance.

As we do not know a priori the suitable number of clusters, we opt for
agglomerative hierarchical clustering. In hierarchical clustering we also need
to define a distance metric for two clusters, so that the two clusters that
are closest to each other can be selected. We explore the results of two
alternatives: average linkage and complete linkage.

Average linkage is the average pairwise distance of the between the objects
of two clusters A and B:

davg(A,B) =
1

|A||B|
∑
x∈A

∑
y∈B

d(x, y). (4)

Complete linkage is the maximum pairwise distance between the objects of
two clusters:

dmax(A,B) = max{d(x, y) : x ∈ A, y ∈ B}. (5)

3.2.3 Cross correlation

When working with time series, an important component is the relative time
displacement. One time series may precede another or be lagged behind it,
this is especially the case with financial indicators that deal with the same
underlying data. An example of two financial indicators that most likely have
a lag based relationship are the number of building projects started and the
number of building projects finished. Cross correlation can be thought of as
lag based correlation, thus, it will contain the value for standard correlation
at lag zero. Cross correlation is then used to determine the most statistically
significant lag by choosing it so that the absolute value of the correlation is
maximized. As a result, we may be able to extract time displaced features
not known upfront, which may then be used in forecasting.
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3.3 Predictive models

3.3.1 Logistic regression

Logistic regression is a variant of the generalized linear model for predicting
a categorical response variable. Instead of predicting the value of a response
variable directly, logistic regression models the probability of a particular
response. In binary logistic regression, the response variable Y belongs to
one of two categories encoded as 0 and 1. The logistic model defines the
conditional probability of Y belonging to class 1 given the observed data:

P (Y = 1|x) =
1

1 + e−w0−wTx
(6)

where x ∈ Rd×1 is the vector of observed values of predictor variables, w ∈
Rd×1 is the vector of coefficients and w0 is the intercept term. [8, p. 119]

The loss function to be minimized in fitting a logistic regression model is the
logarithmic loss, given in [8, p. 120]:

L(w0,w) = −
∑
i

(yi log pi + (1− yi) log(1− pi)), (7)

where yi is the true category of the i-th observation and pi is the probability
of class 1 given by Equation (6). We augment this error function with the
penalty term:

R(λ, p,w) = λ

d∑
i=1

|wi|p (8)

For p = 1 the penalty term (8) corresponds to the Lasso penalty, which
shrinks the coefficients and can set some of them to zero. For p = 2 it
corresponds to the Ridge penalty that only shrinks the coefficients. [8, p. 72]

By applying a penalty term to the model coefficients, our goal is to decrease
the prediction variance, while allowing the prediction bias to increase. Using
cross-validation we can search for values of λ and p ∈ {1, 2} for which this
tradeoff increases the overall prediction accuracy.
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3.3.2 Random forests

Decision trees are powerful, nonparametric hiearchical models for classifica-
tion and regression problems. A decision tree maps the feature space into
rectangular subspaces using simple rules. A simple model, typically a con-
stant, is then fitted on the subspaces.

Trees can have extremely low bias, but high variance in their predictions.
The motivation for random forests is to reduce variance by averaging the
predictions of multiple trees that have differing internal structures. This is
done by bootstrap aggregation. The data is resampled with replacement
and each tree is trained on the resampled data, resulting in an ensemble of
different learners. In addition, a subset of variables is randomly selected as
candidates at each split of a tree. [8, pp. 587-598]

In the tree-building process, the splitting variable in each node is chosen by
Gini index:

Gm =
N∑
k=1

p̂mk(1− p̂mk), (9)

where p̂mk is the proportion of class k observations in node m and N the total
number of classes. For two classes, the index is just 2p̂m(1−p̂m). The variable
that has the largest decrease in Gini is chosen as the splitting variable. [8,
p. 309]

3.3.3 k-nearest neighbor classifier

The k-nearest neighbor classifier differs from the previous two in the sense
that no model is actually estimated. At prediction time, the k data points in
the training set that are nearest to the query point are retrieved. The classi-
fication is done by majority voting. In this model, the main hyperparameter
that needs to be optimized is the number of data points to retrieve, k. [8,
pp. 463-465]

We use the Euclidean distance to determine the distance between data points.
In addition, we weight the vote of each data point by its distance to the query
point.

14



3.3.4 Rule based models

Function CalcReturns(AllocationDecisionFunction, targetVariables,
dates):

# CalcReturns is a function that returns a list of returns, which are
# analyzed at a later stage.

# AllocationDecisionFunction is a function that takes a date as input
# and then returns a vector containing an allocation decision. The
# length of this vector is exactly the length of targetVariables and the
# sum of all of its elements is exactly 1.

# targetVariables is a list of variables that is used to simulate an actual
# investment action. The amount invested in each variable is defined
# by AllocationDecisionFunction.

# dates is a list of dates that defines the interval within which
# the returns are calculated

var returns = [ ]
var previousDate = dates[0]
var allocation = AllocationDecisionFunction(previousDate)
foreach var date in dates do

var newValue = 0
var previousValue = 0
for var i = 0 to length(targetVariables) - 1 do

newValue += targetVariables[i][date] * allocation[i]
previousValue += targetVariables[i][previousDate] * allocation[i]

end
returns.append(newValue / previousValue)
allocation = AllocationDecisionFunction(date)
previousDate = date

end
return returns

Algorithm 1: Pseudocode for the algorithm that computes the returns for
a rule based model within a specific set of dates.

An interesting area of research is the comparison of machine learning methods
with rule based methods. To achieve this we defined Algorithm 1 for the test
set. By analyzing the order and the structure of the code one can conclude
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that the algorithm does not look in to the future, at least if we assume that
the function AllocationDecisionFunction does not process data after the date
that was passed as an argument to it. The advantages of rule based models
compared to ML models is that the underlying logic is explicitly described.
Quite often the term ”black box” is used to describe complex ML methods
that can not be easily inspected [9]. Term may, however, not accurately
characterize all ML models, but still rule based models are generally easier
to understand.

3.4 Modeling and benchmarking

We chose to model the problem as a binary classification task, where the
goal is to predict whether stocks or bonds will have higher expected returns
during the forecasting period. As discussed in Section 2.4, each data point
is associated with a prediction time, and an evaluation time. The prediction
time corresponds to the moment when an investment decision is made, and
the evaluation time when the returns of the investment are known. The
evaluation time for each data point is therefore n-days after the prediction
time, where n is the length of the forecasting period. The models output a 0-1
class label and class probabilities, with 0 corresponding to stocks performing
better during the forecast period.

The model used as input a further transformed dataset, which included the
log-returns for indicators as well as the absolute values. For some indicators,
the absolute value can offer more predictive information, and for trending
indicators, the change can be more important, so both were included in the
model. To reduce the effects of random variation, dimensionality reduction
using PCA was implemented.

To optimize hyperparameters, we used purged and embargoed combinatorial
cross validation with a total of 12 splits of which 10 were used to train the
models, and 2 used for testing. Logarithmic loss (7) was used as the testing
metric.

The performance of different models was tested against the performance of a
static 50/50 allocations. The allocation decisions for the models were made
using class probabilities. If the probability of an asset having higher returns
was greater than 0.6, a 60/40 allocation was used, with 60% being allocated
to the asset with predicted higher returns. Otherwise a 50/50 allocation was
used.
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To simulate the performance of models we used historical backtesting. Mod-
els were initially trained using 2000 business days worth of data. Predictions
were then made for the next forecasting period, whereafter the model was
retrained using more data. This was repeated until predictions were made
for all periods following the initial training data. Performance was measured
using mean log returns per forecast period, and their standard deviation.
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4 Results

The original goal of the team was to develop market timing models for mak-
ing allocation decision between stocks and bonds, and between bonds of short
and long durations. The desired forecast horizon was 3-6 months. However,
closer inspection of data revealed that market timing between long and short
duration bonds would not be of great interest, since long duration bonds gen-
erally have higher returns than short duration bonds. Therefore we decided
to focus on market timing between stocks and long duration bonds.

We also changed the forecast horizon, since with a forecast horizon of 60
trading days (around 3 months in calendar time) our models would constantly
allocate more funds to stocks as opposed to bonds, essentially yielding a
static allocation. This forced us to rethink our goals, and we decided to try
performing allocation decisions with forecast horizons of 5 and 20 trading
days. These models are presented in sections 4.2 and 4.3.

4.1 Clustering of indicators & factor analysis

4.1.1 Principal component analysis

The result from plotting scores of different indicators for monthly data in the
plane of two first principal components can be seen in Figure 2. As stated in
methods section, we can interpret the figure by studying the angles between
the score vectors of different indicators. For example, from the figure, we can
see that V2X and VIX indicators behave very similarly in the plane of first
two principal components as they point almost in the same direction. If the
angle between two indicators is less than 90◦, we say that they attract each
other or behave in similar way.
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Figure 1: Scores of indicators for monthly data and monthly observations in
the plane of two first principal components.

As we want to use both, the value of each indicator and change in value
for each indicator, we divided the indicators into six groups to apply PCA
for dimensional reduction: growth indicators, inflation indicators, volatility
indicators and other three similar groups for change in value for indicators.
We applied PCA separately for each of these groups because in this way we
would be able to interpret the coefficients of different inputs given for the
model better. Now, for example, if we got highest coefficient in some model
for first principal component of growth indicators, it would already tell us a
lot more than just the first principal component of all the indicators.
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When we selected the appropriate number of components for inputs, we had
two rules: At least 60% of the variation should be explained and principal
components should be taken into account if it explained at least 6% of the
total variation in the group of indicators. We also tried different approaches,
but this seemed to give the best performance of models in our initial testing.
We thus took 3 first principal components of volatility indicators, 4 of changes
in values of volatility indicators, 4 of growth indicators and 5 of changes in
values of growth indicators. For inflation indicators, we chose not to use
PCA as it would have only reduced a few dimensions of the input data. This
allowed us to reduce the number of input variables from 59 to 37.

4.1.2 Hierarchial clustering

The results of hierarchical clustering using average linkage are presented be-
low in the form of a dendrogram in Figure 2. The dendrogram can be cut
at any level to yield an appropriate number of clusters. However, our focus
is mostly on understanding how the groups are formed rather than making
a decision on how to partition the variables to a certain number of clusters.

We see that some indicators for market liquidity, volatility and risk sentiment
form a cluster early on in the process. This cluster is the green one that is
visible on the right. The risk indicator group is eventually merged with the
US yield curve and some currencies, and the combined group is eventually
merged with the other half of the indicators. In the other half, the large
red group is formed by indicators that describe economic growth and invest-
ments. The other groups do not have such straightforward interpretation.
The purple one consist mainly of inflation indicators, while the green one
consists of S&P500 price momenta, the realized volatility of S&P500 against
the VIX volatility index and a bull/bear sentiment ratio.
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Figure 2: Dendrogram with average linkage.

The dendrogram that results from clustering using complete linkage is pre-
sented in Figure 3. For the most part the results are similar to Figure 2. On
the left, the risk indicators again form their own group, which is later merged
with a group that mostly contains currencies. The S&P500 price momenta
form their own group again and so do the economic growth indicators and
the inflation indicators. One major change from Figure 2 is that the US yield
curve is now in a rather mixed group that is merged with growth indicators,
instead of being merged with the risk indicators and currencies.
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Figure 3: Dendrogram with complete linkage.

The hierarchical clustering results are quite robust to the choice of linkage
criterion used. We identify two large groups in the dendrograms. One is
formed by the market liquidity, volatility and risk sentiment indicators. The
other contains various indicators related to economic growth.
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4.1.3 Cross correlation

Figure 4: Comparison between standard correlation of returns and the max-
imum value found by cross correlation, accompanied by a plot of the most
significant lag and by a plot that shows how much greater correlation could
be found be introducing said lag. The indicator names are omitted from this
plot, but can be found in the same order in Appendix A.

Figure 4 shows a comparison between standard correlation of returns and the
maximum value found by cross correlation. All correlation values are plotted
as the absolute values of the actual correlations, this was done to make the
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plot easier to understand. Figure 4 also shows the lag at which the most
significant correlation was found and how much this differs from the standard
correlation. The lag was constrained to an absolute maximum of 100 days,
by allowing longer lags higher values for correlations might be found, but too
large lags will probably find relationships that do not actually exist. When
comparing the Cross Correlation Matrix to the Standard Correlation Matrix,
we can clearly see an increase in correlation between variables, for example
in the top left corner. This means that some variables are to some extent
preceded or lagged by others. However, none of our target variables, the
three last entries in each matrix, can accurately be represented by preceding
data from other variables. The results are expected, because if this actually
were possible, then the markets should quickly react to this relationship and
ultimately the information would lose its value.

4.2 Predictive models

We evaluate the predictive accuracy of the models using two metrics. The
first metric is classification accuracy, which is defined for a vector of predicted
labels ŷ and a vector of true labels y as

A(y, ŷ) =
1

n

n∑
i=1

Iyi=ŷi , (10)

where n is the number of elements in both vectors and I is the indicator
function. While classification accuracy is easy to understand, it gives lim-
ited information on the predictive abilities of a classifier. For instance, a
false classification is always penalized equally, regardless of how confident
the classifier was. Therefore our main metric is the log loss that was defined
for logistic regression in Equation (7). Here, we redefine the log loss as a
prediction metric:

L(y, p̂) = − 1

n

n∑
i=1

(yi log p̂i + (1− yi) log(1− p̂i)), (11)

where p̂i is the predicted class probability for P (yi = 1).

To establish a baseline, we fit a naive classifier on the data and compare it
against the other models. The naive classifier simply outputs the relative
class frequencies so far observed as class probabilities.
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The prediction metrics for market timing between stocks and long-duration
bonds with forecast horizons of 5 and 20 trading are in Tables 1 and 2. The
naive classifier achieves the smallest log loss and highest accuracy in both
cases. This means that none of the three models have any predictive ability
in determining which asset would have higher returns after 5 or 20 days. In
both cases, logistic regression is the second best performing classifier. This
because in cross validation best value for the penalty term λ was very large,
meaning that the variables do not actually influence the predictions much
and the model degenerates towards the naive classifier.

Model Log loss Accuracy
Naive classifier 0.6856 56.43%
kNN classifier 0.6956 53.27%

Logistic regression 0.6879 55.28%
Random forest 0.6941 55.68%

Table 1: Model metrics for a forecast horizon of 5 trading days, stock index
against long-duration bonds.

Model Log loss Accuracy
Naive classifier 0.6716 61.07%
kNN classifier 0.6906 57.04%

Logistic regression 0.6762 59.54%
Random forest 0.6983 57.76%

Table 2: Model metrics for a forecast horizon of 20 trading days, stock index
against long-duration bonds.

Overall, we can observe that the accuracies in Table 2 are higher. This is
not surprising, as in the long term stocks are expected to have higher returns
than the bonds, and all models are reflecting this to some extent. However,
the difference in accuracy between the naive classifier and the models is larger
for the longer forecast horizon.

4.3 Benchmarking

The average log returns per forecast horizon and their standard deviations
for forecast horizons of 5 and 20 trading days can be seen in tables 3 and 4.
Figures 5, 6, 7, 8, 9 and 10 show the portfolio performance of the different
classifiers with different forecast horizons. The top plot shows the evolution
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of wealth during the testing period starting from with an initial investment of
1. The middle plot shows the portfolio value relative to the 50/50 allocation,
and the bottom plot shows the allocation decisions.

For the 5 day forecast horizon the 50/50 static allocation achieves the best
performance, having identical returns and standard deviation to logistic re-
gression. Looking at Figure 7, we see that only 50/50 allocations are chosen.
Meaning that with a forecast horizon of 5 days, the predicted class probabil-
ities are all close to 0.5. kNN and random forest both perform worse than
the static allocation, with Random forest having the worst returns as it is
underperforming the static allocation over the entire test period. In addition,
the random forest model has the highest standard deviation of returns.

Figures 5 and 9 suggest that the relative wealth of the portfolios increases
when 60% of funds is allocated to stocks for longer periods of time. When
more allocations are made for stocks for only a few periods, the results are
less predictable, but more often leading to decreases in relative performance.

When allocations other than 50/50 are made only for a few periods, it is
likely that the class probabilities exceed our 60/40 allocation threshold of 0.6
by very little since small changes in the inputs change to allocations back
to 50/50. Meaning that a higher allocation threshold could lead to better
performance.

As in model metrics defined in Tables 1 and 2, the models performed better
when the forecast horizon was increased to 20 days. Random forest achieved
the highest returns, followed by logistic regression, kNN and the static allo-
cation performed the worst. Random forest had again the highest standard
deviation of returns, whereas static allocation was the least risky in this
sense.

Figures 6, 8 and 10 show that with a 20 day forecast horizon, all models
allocate significantly more funds to stocks during the testing period. This
can explain the increase in returns compared to the 50/50 allocation given
the low classification accuracy of the models, since in the long term stocks
give higher returns than bonds.

26



Allocation Daily mean return Yearly return Standard deviation
50/50 static allocation 1.364 e-4 3.469 % 4.294 e-3

kNN classifier 1.269 e-4 3.223 % 4.412 e-3
Logistic regression 1.364 e-4 3.469 % 4.294 e-3

Random forest 1.156 e-4 2.932 % 4.460 e-3

Table 3: Performance metrics of portfolio log returns (forecast horizon 5
days).

Allocation Daily mean return Yearly return Standard deviation
50/50 static allocation 1.660 e-4 4.237 % 4.283 e-3

kNN classifier 1.674 e-4 4.273 % 4.273 e-3
Logistic regression 1.688 e-4 4.310 % 4.310 e-3

Random forest 1.845 e-4 4.720 % 4.595 e-3

Table 4: Performance metrics of portfolio log returns (forecast horizon 20
days).
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Figure 5: Portfolio performance for kNN classifier with a forecast horizon of
5 days.
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Figure 6: Portfolio performance for kNN classifier with a forecast horizon of
20 days.
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Figure 7: Portfolio performance for logistic regression with a forecast horizon
of 5 days.
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Figure 8: Portfolio performance for logistic regression with a forecast horizon
of 20 days.
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Figure 9: Portfolio performance for Random forest with a forecast horizon
of 5 days.
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Figure 10: Portfolio performance for Random forest with a forecast horizon
of 20 days.

4.3.1 Rule based models

Function PreviousDirectionStockIndex(date):

# date is a date
# StockIndex is a global stock index that can be accessed

# StockIndex.GetIndex(date) is a function that returns the numerical
# index for a date

var dateIndex = StockIndex.GetIndex(date)
if StockIndex[dateIndex] > StockIndex[dateIndex - 1] then

# Invest everything in stocks
return (100%, 0%)

else
# Invest everything in bonds
return (0%, 100%)

Algorithm 2: Pseudocode for the algorithm that uses the previous change
as an investment decision.
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One of the simplest rule based models is to determine the direction of the pre-
vious change and make an allocation based on that. This model is described
in pseudocode in Algorithm 2, note that the model can not be optimized
because it does not contain any optimizable parameters. Thus, it can not
possibly overfit, which is a desirable feature, furthermore, the algorithm can
also be used to show that Algorithm 1 does not look in to the future. If the
algorithm in fact would look in to the future, we would get a result where
wealth would accumulate exponentially.

Figure 11: Quantifying the trading strategy defined by Algorithm 2 by run-
ning Algorithm 1 over the test dataset with a daily frequency. The ”Shifted
Backwards Model” uses the same trading strategy, but the decision been
shifted one day backwards.

Figure 11 shows how one’s wealth could have accumulated if Algorithm 2 had
been implemented for trading assets, with a forecast horizon of one day. The
figure also shows how the wealth would have grown if the investment decision
was made one day earlier. Because the model that knows all information up
until now performs significantly better than the one that knows one data
point less, we can conclude that the newest information carries significant
weight.
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Figure 12: Refinement of Algorithm 2 so that it takes risk in to account in
the investment decisions.

Figure 12 shows the performance of a risk constrained verison of Algorithm
2. This version of the model, which can be viewed in Appendix B, has
optimizable parameters, which is why the model was first trained on a part
of the data, however altering the training data did not in our case alter the
optimal found parameters. The optimization had a constraint where the
standard deviation of returns of the model had to be less than or equal to
the standard deviation of returns of the benchmark. This solution is not
re-optimized during the evaluation phase.

Figures with a long time interval can be hard to interpret, so to better evalu-
ate the performance we first divided the data of both the benchmark and the
model in to the following index sets: [0, 1, 2, ..., s − 1], [1, 2, 3, ..., s], ..., [n −
s, n − s + 1, n − s + 2, ..., n − 1], where s is the length of each divided set
and n is the length of the entire data. We chose s = 20 (20 business days
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approximately represent one actual month), and thus we can compare how
each period of length 20 compares itself across the benchmark and the model.
The ”Difference Between Mean Returns” and ”Difference Between Absolute
Returns” show that the model is on average better than the benchmark. On
the other hand, the ”Difference Between Standard Deviation of Returns” tells
us that both have an approximately equal standard deviation. The overall
performance metrics are in Table 5.

Allocation Daily mean return Yearly return Standard deviation
50/50 static allocation 2.031 e-4 5.201 % 4.110 e-3

Algorithm 2 5.683 e-4 15.26 % 5.592 e-3
Refined Algorithm 2 3.335 e-4 8.694 % 4.083 e-3

Table 5: Performance metrics of rule based models (forecast horizon one
day).
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5 Discussion

5.1 Assessment of the results

The results show that with the given modeling choices and dataset, the per-
formance of stocks and bonds can not be predicted. All of the implemented
methods were less accurate than the naive classifier. This poor performance
means that the results obtained in benchmarking should not be given much
weight. During the benchmarking period stocks had 40% higher returns than
bonds, meaning that a complete allocation to stocks would have had higher
returns than any of the models or the 50/50 allocation. So the better returns
can mostly be explained by the models investing more heavily into stocks,
rather than the models ability to predict outcomes.

Importantly all of the models rarely performed 60/40 allocations in favor of
bonds. Meaning that the models were not able to predict decreases in stock
prices. Without the ability to predict decreases in stock prices, the models
are of little worth. Since stocks generate higher returns in the long term, we
would want the model to keep most of our wealth invested into stocks, and
shift the weight into bonds only when we expect stocks to crash.

It is possible that our modeling process was inherently flawed, and we were
using too much old data. If market dynamics change quickly, and we are
training the models on older data, the models are being trained on data
that is no longer relevant and learning outdated dependencies. This could
be an interesting area of further research, to determine whether limiting the
training data to say, the last n years could improve prediction accuracy.

Another possible reason for our poor results is that the data does not contain
sufficient signals to predict the performance of stocks and bonds. Fixing this
would require expertise of financial markets, to choose appropriate indicators.
And some variables that affect the financial markets are hard to quantify and
measure, such as the global political climate.

When considering the performance of Algorithm 2 as seen in Figure 11 it
is important note that executing such a strategy could prove impossible in
practice. The information required to make the allocation decision is only
available at market closing. Thus, the allocation would have to be made
during the next market opening, which can lead to much worse performance,
as evidenced by when shifting the decisions back one day. The real returns of
the model would likely be somewhere between Algorithm 2 trading strategy,
and its shifted version. The change in information between market closing
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and the next days opening is unlikely to be as drastic as between consequent
market closings. However, Hull does describe a strategy where orders are
submitted 5 minutes before close to the market [14]. Assuming that the
value of an asset does not change substantially during the last 5 minutes,
Algorithm 2 could actually perform well. Still, we can not assume that
Varma would be able to invest a significant amount of funds in a matter of
minutes, thus the strategy may only be implemented on a smaller scale.

5.2 Reflection on literature

Our poor results were expected as there is not many publications in the
literature about models that are able to overperform the market. Actually
there is more literature about markets being efficient and that the prices
should contain all the information available. Some say that markets can be
inefficient only for short periods of time but our model can not take advantage
of these short periods as the allocation horizon is very long in the scale of
financial markets [12].

Also if there is a strategy or an indicator that could be utilized to have bet-
ter expected returns than the market with the same level of risk, the other
players in the market would start to mimic the strategy. This would lead
to the performance of the strategy decreasing and therefore stable forecast-
ing patterns or strategies are unlikely to persist for long periods of time in
the financial markets [13]. This can be one reason for why widely followed
indicators did not seem to give any significant predictive information.

Some strategies seemed to work and outperform the market like the one
proposed by Hull and Qiao [14]. However, after the inception of ETF based
on this or similar strategy, the market has clearly outperformed the ETF.
This can be seen from figure 13 as S&P 500 has grown over 40% as meanwhile
Hull Tactical US ETF has grown less than 20% starting from the inception of
the ETF. This might be due to changing market environment or due to other
investors starting to observe similar indicators while making their investment
decisions.
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Figure 13: Relative wealth of Hull Tactical US ETF compared to SPDR S&P
500 ETF starting from end of June 2015.
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6 Conclusions

During this project we had three objectives: clustering of financial indicators,
creation of predictive models that dynamically allocate between assets and
benchmarking these models against a static 50/50 allocation. The bench-
marking was supposed to be evaluated against global stock and both long
and short bond indexes, but the short bond indexes were not extensively
analyzed, due to them being generally outperformed by the long term bonds.

To cluster the financial indicators that were available we used hierarchial
clustering using a distance metric derived from correlation between two in-
dicators. Additionally, we reduced the dimensions of the data with principal
component analysis and found lag based relationships with cross correlation.
An interesting avenue of future research could be to evaluate how different
distance metrics could change the results of clustering.

When trying to predict the future, we created a modelling philosophy that
was informed by previous research within this subject. We tried combinato-
rial cross validation, introducing moving averages, reduction of dimensions
and implemented three machine learning methods: logistic regression, k-
nearest neighbors and random forests. All of these models failed to signifi-
cantly beat the static allocation with forecast horizons 5 and 20 days.

Furthermore, we created and tested a few rule based models, of which some
performed exceptionally well. The parameterless model described by Algo-
rithm 2 generates an absolute return of over 12 times greater (for the entire
dataset) than that of the static 50/50 allocation, with only a slightly higher
volatility. When constraining volatility to the same level as the 50/50 alloca-
tion the return was over 2.5 times higher. It must however be noted that the
strategy may not be implementable in practice, because the model assumes
that one can always execute trades at the closing price of each day, which is
generally an idealization.

Another weakness in all of our models is that none of them account for
the costs caused by slippage, taxes and transactional fees, thus, the actual
performance should be assumed to be even worse. However, to what extent
these affect a financial institution like Varma is not known by us.

All in all the project was completed successfully. The experts at Varma were
at least interested in the results produced by the clustering of regimes, the
hierarchical clustering of time series and the concept of cross correlation to
determine lags. We were also able to create seemingly functional rule based
models and even though the machine learning techniques did not produces
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useful results that could be implemented as investment strategies, the con-
cepts that did not work with the given are now known. This is in itself
already a significant piece of knowledge and could in the future be used to
guide research in the area of financial forecasting and modeling.
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7 Appendix

A Indicators in the Cross Correlation Figure

(Figure 4)

01. CESIG10 Index | 37. CDX HY CDSI GEN 5Y PRC Corp

02. CECICG10 Index | 38. ITRX XOVER CDSI GEN 5Y Corp

03. CESIEM Index | 39. .HYIGEM G Index

04. CECICEMX Index | 40. SPX 1m price momentum

05. USGGT05Y Index | 41. SPX 3m price momentum

06. USYC3M10 Index | 42. SPX 6m price momentum

07. USYC2Y10 Index | 43. SPX 12m price momentum

08. USYC5Y30 Index | 44. VIX vs. SPX 20d Realized Volatility

09. HG1 Comdty | 45. NDUEACWF Index

10. S5INDU Index/SPX Index | 46. LG13TRUU Index

11. USDKRW Curncy | 47. LG71TRUU Index

12. USDAUD Curncy |

13. XAU Curncy/XAG Curncy |-------------------------------------------

14. SOX Index/SPX Index | This list contains only those indicators

15. DAX Index/SPX Index | with a daily frequency. The cross

16. SXPP Index/SXXP Index | correlation would not have been able to

17. HG1 Comdty/XAU Curncy | determine the actual lags if a lower

18. JPYAUD Curncy | frequency would have been used.

19. USDSEK Curncy |

20. FWISUS55 Index | The indicators place themselves in

21. FWISEU55 Index | the matrices as follows:

22. CO1 Comdty | _________________________

23. USGGBE05 Index | 1. |___|___|___|___|___|___|

24. BCOMSP Index | 2. |___|___|___|___|___|___|

25. BDIY Index | 3. |___|___|___|___|___|___|

26. PCUSEQTR Index | ... |___|___|___|___|___|___|

27. GFSIRMKT Index | 46. |___|___|___|___|___|___|

28. GFSIRLIQ Index | 47. |___|___|___|___|___|___|

30. VIX Index | 1. 2. 3. ... 46. 47.

31. V2X Index |

32. MOVE Index |

33. JPMVXYGL Index |

34. JGAGIGSP Index |

35. JGAGHYSP Index |

36. JPEIGLSP Index |
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B Refined Algorithm 2

Function PreviousDirectionStockIndexRefined(date,
maxAllocationSize, riskAdjustment, lookbackWindow):

# date is a date

# maxAllocationSize is a number within the range [0, 1.0] and
# determines the maximum allocation in an asset

# riskAdjustment is a number within the range [0, 1.0] and
# determines how much we prefer the bonds over the stocks

# lookbackWindow defines how many days are looked back
# when assessing the risk

# StockIndex is a global stock index that can be accessed

# StockIndex.GetIndex(date) is a function that returns the numerical
# index for a date

# StockIndex.GetRollingStd(lookbackWindow) is a function that
# returns the rolling standard deviation with a given window

var distributableAllocation = 1.0
var dateIndex = StockIndex.GetIndex(date)
var rollingStockStd = StockIndex.GetRollingStd(lookbackWindow)

if rollingStockStd(dateIndex) > rollingStockStd(dateIndex - 1) then
distributableAllocation -= riskAdjustment

if StockIndex[dateIndex] > StockIndex[dateIndex - 1] then
var inStocks = distributableAllocation * maxAllocationSize
var inBonds = (1.0 - distributableAllocation) +
distributableAllocation * (1.0 - maxAllocationSize)

return (inStocks, inBonds)

else
var inStocks = distributableAllocation * (1.0 - maxAllocationSize)
var inBonds = (1.0 - distributableAllocation) +
distributableAllocation * maxAllocationSize

return (inStocks, inBonds)
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Self Assessment

Plan vs. Reality

The project was well scoped from the very beginning as Varma had provided
us clear tasks to fulfill in order to reach the final result. Because of this
the initial schedule and scope did not change during the project for the
most part. The scope was appropriate for the length of this project, and we
experienced the workload to not be too large even most of our team members
were working part or full time during this project.

Small changes in the schedule were due to the initial schedule having too
much time allocated for different machine learning methods. Instead, we
used a large amount of time to develop an appropriate modelling process.
After we had chosen the way to model the market timing, it was easy and
fast to try out how different methods performed in the model. In the end
we also chose to put more emphasis on making allocation decisions between
stocks and bonds as we noticed that during almost all 60 day periods in
the past few years, the long term bonds outperformed the short term bonds.
Therefore, the model that puts more weight on long term bonds would always
beat the static allocation.

We were able to avoid most of the risks listed in the project plan. All of the
team members were active during the whole project, communication with
the client was active, we got the support we needed from the client team and
there were no major data related issues. However, as stated in conclusions the
model did not seem to give outstanding results and further research should
be done before making any financial decisions using our approach. This was
expected as we listed the probability of the model failing in performance
benchmark to be high in the beginning of this project.

Project Success

Even though our results were not significant, the project still was very suc-
cessful in many ways. We were able to provide Varma interesting insights
from the clustering part of the project. Also, they got the source code for
our modeling part, so they can seek better results using our approach with
different set of indicators or with different methods in case they want to
investigate our model further.
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Our team members learned a lot about different concepts in financial markets
and about the operations of mutual pension insurance companies. We were
also able to deepen our knowledge on different machine learning methods by
applying those to real life problems. This project also taught us many project
working skills, such as communication with the client, how to schedule the
project and how the possible risks should be taken into account. These skills
will help us to work in groups and plan our possible future projects better.

What Could Have Been Done Better

As our final model did not work as well as we would have wanted, we could
have done many things better during this project. In the beginning of the
project, if we would have allocated even more time for the modeling part,
we could have had enough time to try out few different modeling approaches
and maybe even include some other models such as neural networks and
gradient boosting to model the market timing. We also could have done wider
literature survey to find different approaches for market timing problem as
we only used few sources to justify our current approach. However, it was
very difficult to find well performing models in the literature and even finding
the papers we used was not easy.

The teaching staff and the client gave us the support we needed during the
course, which is why we think that there is not much that could have been
done better by them.
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